Joined
·
2,513 Posts
Might as well make a thread dedicated just to it!
Torque Multiplication: The gaining of torque by use of gears, belts and/or pulleys.
Horsepower Multiplication: Power of a point (relative to a given curve), the result of substituting the coordinates of any point in that expression which being put equal to zero forms the equation of the curve; as, x^2 _ y^2 - 100 is the power of the point x, y, relative to the circle x^2 _ y^2 - 100 = 0.
Add them together: Maximum acceleration at any speed occurs at the HP peak.
Maximum acceleration in any gear occurs at the torque peak.
Oh, ya, I know, confusing, lets break this down a bit:
A while back, a gentleman by the name of Watt made some observations, and concluded that the average horse of the time could lift a 550 pound weight one foot in one second, thereby performing work at the rate of 550 foot pounds per second, or 33,000 foot pounds per minute, for an eight hour shift, more or less. He then published those observations, and stated that 33,000 foot pounds per minute of work was equivalent to the power of one horse, or, one horsepower.
For purposes of this discussion, we need to measure units of force from rotating masses (crankshafts), so we'll use terms which define a *twisting* force, such as foot pounds of torque. A foot pound of torque is the twisting force necessary to support a one pound weight on a weightless horizontal bar, one foot from the fulcrum (pivot point).
Now, it's important to understand that nobody on the planet ever actually measures horsepower from a running engine. What we actually measure (on a dynamometer) is torque, expressed in foot pounds (in the U.S.), and then we *calculate* actual horsepower by converting the twisting force of torque into the work units of horsepower. That is what is meant by SAE CORRECTED HP!
OK. Remember Watt? He said that 33,000 foot pounds of work per minute was equivalent to one horsepower. If we divide the 6.2832 foot pounds of work we've done per revolution of that weight into 33,000 foot pounds, we come up with the fact that one foot pound of torque at 5252 rpm is equal to 33,000 foot pounds per minute of work, and is the equivalent of one horsepower. If we only move that weight at the rate of 2626 rpm, it's the equivalent of 1/2 horsepower (16,500 foot pounds per minute), and so on. Therefore, the following formula applies for calculating horsepower from a torque measurement:
Torque * RPM
Horsepower = ------------
5252
This is not a debatable item. It's the way it's done. Period.
Now, what does all this mean in carland?
First of all, from a driver's perspective, torque, to use the vernacular, RULES
. Any given car, in any given gear, will accelerate at a rate that *exactly* matches its torque curve (allowing for increased air and rolling resistance as speeds climb). Another way of saying this is that a car will accelerate hardest at its torque peak in any given gear, and will not accelerate as hard below that peak, or above it. Torque is the only thing that a driver feels, and horsepower is just sort of an esoteric measurement in that context. 300 foot pounds of torque will accelerate you just as hard at 2000 rpm as it would if you were making that torque at 4000 rpm in the same gear, yet, per the formula, the horsepower would be *double* at 4000 rpm. Therefore, horsepower isn't particularly meaningful from a driver's perspective, and the two numbers only get friendly at 5252 rpm, where horsepower and torque always come out the same.
In contrast to a torque curve (and the matching pushback into your seat), horsepower rises rapidly with rpm, especially when torque values are also climbing. Horsepower will continue to climb, however, until well past the torque peak, and will continue to rise as engine speed climbs, until the torque curve really begins to plummet, faster than engine rpm is rising. However, as I said, horsepower has nothing to do with what a driver *feels*.
You don't believe all this?
Fine. Take your non turbo car (turbo lag muddles the results) to its torque peak in first gear, and punch it. Notice the belt in the back? Now take it to the power peak, and punch it. Notice that the belt in the back is a bit weaker? Fine. Can we go on, now?
3 things that win every race: Torque. Cubic Inches. Traction....
Torque Multiplication: The gaining of torque by use of gears, belts and/or pulleys.
Horsepower Multiplication: Power of a point (relative to a given curve), the result of substituting the coordinates of any point in that expression which being put equal to zero forms the equation of the curve; as, x^2 _ y^2 - 100 is the power of the point x, y, relative to the circle x^2 _ y^2 - 100 = 0.
Add them together: Maximum acceleration at any speed occurs at the HP peak.
Maximum acceleration in any gear occurs at the torque peak.
Oh, ya, I know, confusing, lets break this down a bit:
A while back, a gentleman by the name of Watt made some observations, and concluded that the average horse of the time could lift a 550 pound weight one foot in one second, thereby performing work at the rate of 550 foot pounds per second, or 33,000 foot pounds per minute, for an eight hour shift, more or less. He then published those observations, and stated that 33,000 foot pounds per minute of work was equivalent to the power of one horse, or, one horsepower.
For purposes of this discussion, we need to measure units of force from rotating masses (crankshafts), so we'll use terms which define a *twisting* force, such as foot pounds of torque. A foot pound of torque is the twisting force necessary to support a one pound weight on a weightless horizontal bar, one foot from the fulcrum (pivot point).
Now, it's important to understand that nobody on the planet ever actually measures horsepower from a running engine. What we actually measure (on a dynamometer) is torque, expressed in foot pounds (in the U.S.), and then we *calculate* actual horsepower by converting the twisting force of torque into the work units of horsepower. That is what is meant by SAE CORRECTED HP!
OK. Remember Watt? He said that 33,000 foot pounds of work per minute was equivalent to one horsepower. If we divide the 6.2832 foot pounds of work we've done per revolution of that weight into 33,000 foot pounds, we come up with the fact that one foot pound of torque at 5252 rpm is equal to 33,000 foot pounds per minute of work, and is the equivalent of one horsepower. If we only move that weight at the rate of 2626 rpm, it's the equivalent of 1/2 horsepower (16,500 foot pounds per minute), and so on. Therefore, the following formula applies for calculating horsepower from a torque measurement:
Torque * RPM
Horsepower = ------------
5252
This is not a debatable item. It's the way it's done. Period.
Now, what does all this mean in carland?
First of all, from a driver's perspective, torque, to use the vernacular, RULES
In contrast to a torque curve (and the matching pushback into your seat), horsepower rises rapidly with rpm, especially when torque values are also climbing. Horsepower will continue to climb, however, until well past the torque peak, and will continue to rise as engine speed climbs, until the torque curve really begins to plummet, faster than engine rpm is rising. However, as I said, horsepower has nothing to do with what a driver *feels*.
You don't believe all this?
Fine. Take your non turbo car (turbo lag muddles the results) to its torque peak in first gear, and punch it. Notice the belt in the back? Now take it to the power peak, and punch it. Notice that the belt in the back is a bit weaker? Fine. Can we go on, now?